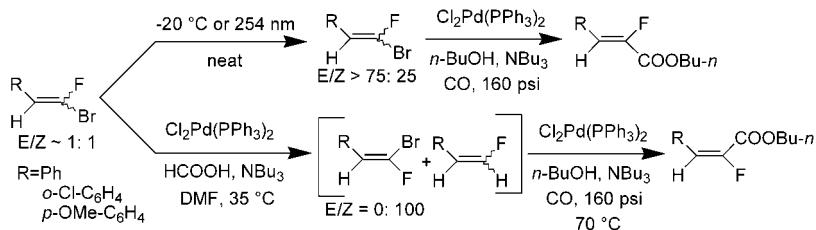


Kinetic Separation Methodology for the Stereoselective Synthesis of (*E*)- and (*Z*)- α -Fluoro- α,β -unsaturated Esters via the Palladium-Catalyzed Carboalkoxylation of 1-Bromo-1-fluoroalkenes[†]


Jianjun Xu and Donald J. Burton*

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

donald-burton@uiowa.edu

Received January 2, 2002

ABSTRACT

Methodology for the stereoselective preparation of both (*E*)- and (*Z*)- α -fluoro- α,β -unsaturated esters is described. 1-Bromo-1-fluoroalkenes ($E/Z \approx 1:1$) can be isomerized to high E/Z ratio mixtures, which participate in palladium-catalyzed carboalkoxylation and lead to (*Z*)- α -fluoro- α,β -unsaturated esters in high stereoselectivity. The same starting material can also be kinetically reduced to get an E/Z ratio of 0:100; similar carboalkoxylation reaction at 70 °C affords (*E*)- α -fluoro- α,β -unsaturated esters stereospecifically.

α -Fluoro- α,β -unsaturated esters have been widely employed as precursors in the preparation of monofluorinated retinoids,¹ fluorinated analogues of insect sex pheromones,² and pyrethroids.³ However, although a variety of methodologies have been explored and reported for their synthesis, there is no general and convenient method that permits preparation of both (*E*)- and (*Z*)- α -fluoro- α,β -unsaturated esters stereoselectively.

Methodologies for the stereoselective synthesis of (*Z*)- α -fluoro- α,β -unsaturated esters include Durst reaction from

3-hydroxy-2-fluoro-2-sulfinyl-esters,⁴ condensation between 2-fluoro-3-oxo-succinates and aldehydes,⁵ thermal elimination from α -fluorosulfoxide,⁶ multistep preparation from trifluorovinyl compounds,⁷ one-pot reaction between aldehydes or ketones and diethyl chloromalonate in the “spray-dried” KF–sulfolane system,⁸ dehydroxylation of α -fluoro- β -hydroxy esters,⁹ reaction between α -azoesters and phenylselenenyl fluoride equivalent followed by oxidation by H_2O_2 ,¹⁰ reaction between β,β' -dihydroxy carboxylic acid

[†] This paper is dedicated to Professor Herbert C. Brown, a pioneer in organometallic stereoselective synthesis, on the occasion of his 90th birthday.

(1) Liu, R. S. H.; Matsumoto, H.; Asato, A. E.; Denny, M.; Schichida, Y.; Yoshizawa, T.; Dahlquist, F. W. *J. Am. Chem. Soc.* **1981**, *103*, 7195–7201.

(2) Camps, F.; Coll, J.; Fabrias, G.; Guerrero, A. *Tetrahedron* **1984**, *40*, 2871–2878.

(3) Arlt, D.; Jautelat, M.; Lantzsch, R. *Angew. Chem., Int. Ed. Engl.* **1981**, *20*, 703–818.

(4) (a) Chevrie, D.; Lequeux, T.; Pommelet, J. C. *Org. Lett.* **1999**, *1*, 1539–1541. (b) Jouen, C.; Lemaître, S.; Lequeux, T.; Pommelet J. C. *Tetrahedron* **1998**, *54*, 10801–10810.

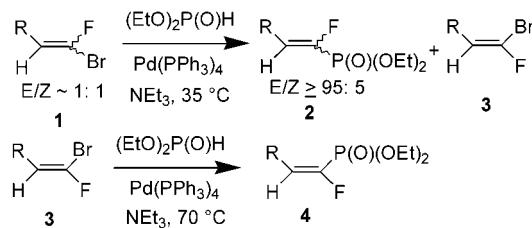
(5) (a) Bergmann, E. D.; Shahak, I. *J. Chem. Soc.* **1961**, 4033–4038. (b) Clemenceau, D.; Cousseau, J. *Tetrahedron Lett.* **1993**, *34*, 6903–6906.

(6) Allmendinger, T. *Tetrahedron* **1991**, *47*, 4905–4914.

(7) Park, H. M.; Uegaki, T.; Konno, T.; Ishihara, T.; Yamanaka, H. *Tetrahedron Lett.* **1999**, *40*, 2985–2988.

(8) Kitazume, T.; Ishikawa, N. *Chem. Lett.* **1981**, 1259–1260.

(9) Elkik, E.; Francesch, C. *Bull. Soc. Chim. Fr.* **1986**, *3*, 423–428.


esters and vanadium(V) trichloride oxide,¹¹ Peterson olefination,¹² and reductive coupling–elimination reaction between methyl dichlorofluoroacetate and carbonyl compounds in the presence of zinc(0)-copper(I) chloride.¹³

The Wadsworth–Horner–Emmons reaction between fluorocarboalkoxy-substituted dialkylphosphonate anion and carbonyl compounds is the most popular method for the stereoselective preparation of (*E*)- α -fluoro- α,β -unsaturated esters.¹⁴ Preparation from α -halo- β -mesyloxy sulfoxides has also been reported.¹⁵

Many of these methods provide a convenient route for the preparation of either (*E*)- or (*Z*)- α -fluoro- α,β -unsaturated esters stereoselectively. A general method that could offer a straightforward route to **both** (*E*)- and (*Z*)-isomers stereoselectively would be preferred. Herein, we describe the preparation of (*E*)- and (*Z*)- α -fluoro- α,β -unsaturated esters by palladium-catalyzed carboalkoxylation reaction of high *E/Z* and (*Z*)-1-bromo-1-fluoroalkenes, which are readily available from a common precursor.

1-Bromo-1-fluoroalkenes **1**, which are conveniently prepared from CFBr_3 , PPh_3 , and aldehydes,¹⁶ could potentially serve as precursors for the preparation of both (*E*)- and (*Z*)- α -fluoro- α,β -unsaturated esters. The separation of the (*E*)- and (*Z*)-isomers of 1-bromo-1-fluoroalkenes continues to be a problem, however.^{17,18} We have reported that the (*E*)-1-bromo-1-fluoroalkene in an isomeric mixture ($E/Z \approx 1:1$) reacts faster than the corresponding (*Z*)-isomer at room temperature, as exemplified in the palladium-catalyzed preparation of (*E*)- α -fluorovinyl phosphonates **2** (Scheme 1).¹⁸ Most of the (*Z*)-isomer in the mixture remains unreacted

Scheme 1. Preparation of (*E*)- and (*Z*)- α -Fluorovinyl Phosphonates from **1**¹⁸

and could be recovered. Similar coupling of the recovered (*Z*)-1-bromo-1-fluoroalkene **3** at higher temperature gave

(10) Usuki, Y.; Iwaoka, M.; Tomoda, S. *J. Chem. Soc., Chem. Comm.* **1992**, 1148–1150.

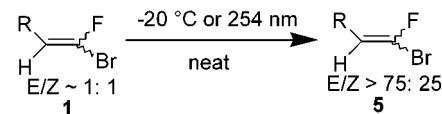
(11) Ishihara, T.; Shintani, A.; Yamanaka, H. *Tetrahedron Lett.* **1998**, 39, 4865–4868.

(12) Lin, J.; Welch, J. T. *Tetrahedron Lett.* **1998**, 39, 9613–9616.

(13) Ishihara, T.; Kuroboshi, M. *Chem. Lett.* **1987**, 1145–1148.

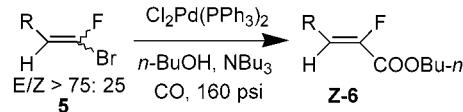
(14) (a) Thenappan, A.; Burton, D. J. *J. Org. Chem.* **1990**, 55, 4639–4642. (b) Machleidt, H.; Wessendorf, R. *Liebig Ann. Chem.* **1964**, 674, 1–10. (c) Daubresse, N.; Chupeau, Y.; Francesch, C.; Lapierre, C.; Pollet, B.; Rolando, C. *Chem. Comm.* **1997**, 1489–1490. (d) Sano, S.; Ando, T.; Yokoyama, K.; Nagao, Y. *Synlett* **1998**, 7, 777–779.

(15) Satoh, T.; Itoh, N.; Onda, K.-i.; Kitoh, Y.; Yamakawa, K. *Tetrahedron Lett.* **1992**, 33, 1483–1484.


(16) (a) Vanderhaar, R. W.; Burton, D. J.; Nae, D. G. *J. Fluorine Chem.* **1971/72**, 1, 381–383. (b) Burton, D. J. *J. Fluorine Chem.* **1983**, 23, 339–357.

(17) Chen, C.; Wilcoxen, K.; Strack, N.; McCarthy, J. R. *Tetrahedron Lett.* **1999**, 40, 827–830.

pure (*Z*)- α -fluorovinyl phosphonates **4** in good yields. It was also demonstrated that the kinetic separation occurred in the oxidative addition step of the palladium catalytic cycle.¹⁸


Recently we found that 1-bromo-1-fluoroalkenes (*E/Z* \approx 1:1) **1** isomerize to 1-bromo-1-fluoroalkenes **5** with high *E/Z* ratios (normally *E/Z* $>$ 75:25) when stored at -20°C (Scheme 2) or by photochemical irradiation (254 nm) at room

Scheme 2. Isomerization of 1-Bromo-1-fluoroalkenes

temperature.¹⁹ Since α,β -difluoro- α,β -unsaturated esters with defined stereochemistry have been successfully prepared in this group from 1,2-difluoro-1-iodoalkenes and α,β -difluoro- β -iodostyrenes via palladium-catalyzed stereospecific carboalkoxylation,²⁰ we examined similar palladium-catalyzed carboalkoxylation reaction of **5** at room temperature (Scheme 3). α -Fluoro- α,β -unsaturated esters **Z-6** with high *Z/E* ratios

Scheme 3. Palladium-Catalyzed Carboalkoxylation of High *E/Z* Ratio 1-Bromo-1-fluoroalkenes

were formed and successfully separated from the remaining (*Z*)-1-bromo-1-fluoroalkenes (Table 1, entries 1–4).

(*Z*)-1-Bromo-1-fluoroalkenes **3** were expected to undergo similar palladium-catalyzed carboalkoxylation at higher temperature to stereospecifically afford (*E*)- α -fluoro- α,β -unsaturated esters. To separate **3** from **1**, we decided to choose a reducing reagent that could selectively reduce the (*E*)-isomer in 1-bromo-1-fluoroalkene mixtures. It was found that the $\text{HCOOH}/\text{NBu}_3/\text{Pd}(\text{II})/\text{DMF}$ system gave the best results (Scheme 4). All of the (*E*)-isomer and a small amount of the (*Z*)-isomer were reduced to **7**; most of the (*Z*)-isomer **3** remained unreacted. Similar palladium-catalyzed reduction of vinyl halides by HCOOH/NR_3 has been reported.²¹ *E/Z* ratios of the remaining 1-bromo-1-fluoroalkenes reached 0:100, and **3** could be isolated pure. As the isolation of **3** was time-consuming and the yields of **3** were lowered accordingly, we decided not to separate **3** from the reduced products **7** at this stage. This decision was based on the following reasons: the reduced products **7** generally do not

(18) Zhang, X.; Burton, D. J. *Fluorine Chem.* **2001**, 112, 47–54.

(19) Xu, J.; Burton, D. J. Unpublished results.

(20) Wesolowski, C. A.; Burton, D. J. *Tetrahedron Lett.* **1999**, 40, 2243–2246.

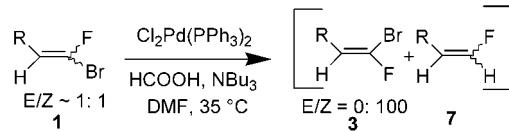
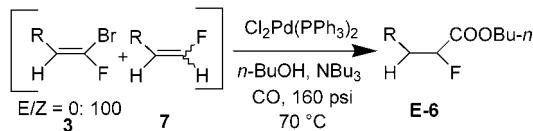

(21) (a) Cortese, N. S.; Heck, R. F. *J. Org. Chem.* **1977**, 42, 3491–3494. (b) Cacchi, S.; Morera, E.; Ortari, G. *Tetrahedron Lett.* **1984**, 25, 4821–4824.

Table 1. Preparation of (*Z*)- and (*E*)- α -Fluoro- α,β -unsaturated Esters **6** from **5** and **3**


entry	R	<i>E/Z</i> of 5 or 3	temp (°C)	time (h)	<i>Z/E</i> of isolated product	<i>Z/E</i> in the reaction mixture ^c	isolated yield (conversion) ^d
1	Ph- 5a	88:12	rt	57	99:1 Z-6a	99:1	72(82)
2	<i>o</i> -Cl-C ₆ H ₄ - 5b	82:18	rt	96	99:1 Z-6b	99:1	78(95)
3	<i>p</i> -OMe-C ₆ H ₄ - 5c	81:19	rt	258	100:0 Z-6c	98:2	73(91)
4	PhC(CH ₃)H- 5d	83:17	45	115	98:2 Z-6d	98:2	56(67)
5	Ph- 3a	0:100 ^a	70	180	0:100 E-6a	0:100	90
6	<i>o</i> -Cl-C ₆ H ₄ - 3b	0:100 ^a	70	125	0:100 E-6b	0:100	94
7	<i>p</i> -OMe-C ₆ H ₄ - 3c	0:100 ^a	70	155	2:98 ^b E-6c	0:100	79
8	PhC(CH ₃)H- 3d	0:100 ^a	70	161	0:100 E-6d	0:100	92

^a *E/Z* ratio of **3** in the mixture of **3** and **7**. ^b *Z/E* ratio was 100:0 when the reaction was completed; isomerization occurred in the process of separation. ^c *Z/E* ratio was determined by ¹⁹F NMR analysis of the reaction mixture when the reaction was completed. ^d Conversion was calculated on the basis of the amount of (*E*)-1-bromo-1-fluoroalkene in the starting (*E,Z*)-isomeric mixture (entries 1–4) or on the basis of the amount of (*Z*)-1-bromo-1-fluoroalkene **3** in the mixture of **3** and **7** (entries 5–8).

participate in further reactions (including carboalkoxylation); the desired products (e.g., (*E*)- α -fluoro- α,β -unsaturated esters) can be very easily separated from **7** by column chromatography; and the relative molar ratios of **3** and **7** in the mixture can be easily determined by ¹⁹F NMR analysis, which was utilized to calculate the weight percentage of **3** in a mixture of **3** and **7**. On the basis of this kinetic separation strategy several 1-bromo-1-fluoroalkenes (*E/Z* = 0:100) **3** and **7** were obtained (Scheme 4).

Scheme 4. Kinetic Separation Method to Prepare (*Z*)-1-bromo-1-fluoroalkenes

When the above mixture of **3** and **7** was reacted with *n*-BuOH, NBu₃, Cl₂Pd(PPh₃)₂ (4 mol %), and CO (160 psi) at 70 °C (Scheme 5), α -fluoro- α,β -unsaturated esters (*Z/E*

Scheme 5. Palladium-Catalyzed Carboalkoxylation of (*Z*)-1-Bromo-1-fluoroalkenes

= 0:100) were successfully formed, as detected by ¹⁹F NMR analysis of the reaction mixture (Table 1, entries 5–8). Pure (*E*)- α -fluoro- α,β -unsaturated esters **E-6** were isolated by silica gel column chromatography.

In conclusion, we have described a general and convenient method to prepare **both** (*E*- and (*Z*)- α -fluoro- α,β -unsaturated esters from common starting materials that are readily available. 1-Bromo-1-fluoroalkenes (*E/Z* \approx 1:1) can be isomerized to high *E/Z* ratios, which undergo palladium-catalyzed carboalkoxylation to form (*Z*)- α -fluoro- α,β -unsaturated esters in high stereoselectivity. 1-Bromo-1-fluoroalkenes (*E/Z* \approx 1:1) could also be kinetically reduced so that the remaining (*Z*)-1-bromo-1-fluoroalkenes reached an *E/Z* ratio of 0:100. A mixture of the (*Z*)-1-bromo-1-fluoroalkenes and the reduced products participate in a similar carboalkoxylation reaction at 70 °C to afford (*E*)- α -fluoro- α,β -unsaturated esters stereospecifically. Since this class of α,β -unsaturated esters has been shown to be converted into high ee 2-fluoroalkanoic acids via asymmetric hydrogenation,²² this methodology should provide a useful entry to the precursors for asymmetric hydrogenation.

Acknowledgment. We gratefully acknowledge the National Science Foundation for their support of this work.

Supporting Information Available: Typical experimental procedures for the synthesis of **Z-6(a–d)**, **E-6(a–d)**, and their characterization by ¹⁹F, ¹H, ¹³C NMR, GC-MS, and HRMS. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL025506W

(22) Saburi, M.; Shao, L.; Sakurai, J.; Uchida, Y. *Tetrahedron Lett.* **1992**, 33, 7877–7880.